Guest Current Subscriptions | Open Access Plus | Free Content | About | Sign in | New Users: Sign up | Mark List  
  Protein & Peptide Letters

Volume 18 Issue 7
ISSN: 0929-8665

   All Titles

Gaussian Process: A Promising Approach for the Modeling and Prediction of Peptide Binding Affinity to MHC Proteins
pp.670-678 (9) Authors: Yanrong Ren, Xiaolin Chen, Ming Feng, Qiang Wang, Peng Zhou

On the basis of Bayesian probabilistic inference, Gaussian process (GP) is a powerful machine learning method for nonlinear classification and regression, but has only very limited applications in the new areas of computational vaccinology and immunoinformatics. In the current work, we present a paradigmatic study of using GP regression technique to quantitatively model and predict the binding affinities of over 7000 immunodominant peptide epitopes to six types of human major histocompatibility complex (MHC) proteins. In this procedure, the sequence patterns of diverse peptides are characterized quantitatively and the resulting variables are then correlated with the experimentally measured affinities between different MHC and their peptide ligands, by using a linearity- and nonlinearity-hybrid GP approach. We also make systematical comparisons between the GP and two sophisticated modeling methods as partial least square (PLS) regression and support vector machine (SVM) with respect to their fitting ability, predictive power and generalization capability. The results suggest that GP could be a new and effective tool for the modeling and prediction of MHC-peptide interactions and would be promising in the field of computer-aided vaccine design (CAVD).

Keywords: Gaussian process, MHC protein, peptide epitope, statistical modeling
Affiliation: School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China

  Key: New Content Free Content Open Access Plus Subscribed Content

Bentham Science Publishers

  Copyright © 1994 - 2015   Bentham Science Publishers