Guest Open Access Plus | Free Content | About | Sign in | New Users: Sign up | Mark List  

Current Alzheimer Research

Volume 5 Issue 3
ISSN: 1567-2050
eISSN: 1875-5828


   All Titles

  Assembly of the Asparagine- and Glutamine-Rich Yeast Prions into Protein Fibrils
  pp.251-259 (9) Authors: Luc Bousset, Jimmy Savistchenko, Ronald Melki

The proteins Ure2, Sup35 and Rnq1 from the baker's yeast have infectious properties, termed prions, at the origin of heritable and transmissible phenotypic changes. It is widely believed that prion properties arise from the assembly of Ure2p, Sup35p and Rnq1p into insoluble fibrils.

Yeast prions possess regions crucial for their propagation that can be either N- or C-terminal. These regions have unusual amino acid composition. They are very rich in glutamine and asparagine residues and resemble in that to huntingtin, a protein involved in the neurodegenerative Huntington's disease.

Yeast prions assembly process has been hypothesized to be the consequence of the properties of glutamines and asparagines to engage in polar protein-protein interactions, termed polar-zippers. While this can certainly occur under certain conditions, glutamine and asparagine residues can establish other kinds of interactions with a variety of amino acid residues thus mediating protein-protein interactions involved in the assembly of polypeptide chains into high molecular weight oligomers.

This review details the interactions that can be established by glutamine and asparagine residues that may allow a better understanding of their role in mediating protein-protein interactions and prion propagation.

  Keywords: Prion, [PSI+], [URE3], Sup35p, Ure2p, amyloid fibrils, native-like assemblies
  Affiliation: Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
  Key: New Content Free Content Open Access Plus Subscribed Content

Bentham Science Publishers


  Copyright © 1994 - 2015   Bentham Science Publishers