Guest Open Access Plus | Free Content | About | Sign in | New Users: Sign up | Mark List  

Current Stem Cell Research & Therapy

Volume 1 Issue 3
ISSN: 1574-888X
eISSN: 2212-3946

 

   All Titles

  Harnessing Pluripotency from Differentiated Cells: A Regenerative Source for Tissue-Specific Stem Cell Therapies
  pp.325-331 (7) Author: Ilham Saleh Abuljadayel
 
 
      Abstract

Processes involving conversion of mature adult cells into undifferentiated cells have tremendous therapeutic potential in treating a variety of malignant and non-malignant disorders, including degenerative diseases. This can be achieved in autologous or allogeneic settings, by replacing either defective cells or regenerating those that are in deficit through reprogramming more commited cells into stem cells. The concept behind reprogramming differentiated cells to a stem cell state is to enable the switching of development towards the required cell lineage that is capable of correcting the underlying cellular dysfunction. The techniques by which differentiated cells can reverse their development, become pluripotent stem cells and transdifferentiate to give rise to new tissue or an entire organism are currently under intense investigation.

Examples of reprogramming differentiation in mature adult cells include nuclear reprogramming of more commited cells using the cytoplasm of empty oocytes obtained from a variety of animal species, or cell surface contact of differentiated cells through receptor ligand interaction. Such ligands include monoclonal antibodies, cytokines or synthetic chemical compounds. Despite controversies surrounding such techniques, the concept behind identification and design/screening of biological or pharmacological compounds to enable re-switching of cell fate in-vivo or ex-vivo is paramount for current drug therapies to be able to target more specifically cellular dysfunction at the tissue/organ level. Herein, this review discusses current research in cellular reprogramming and its potential application in regenerative medicine.

 
  Keywords: Somatic cell plasticity, Nuclear transfer, Reprogramming, Retrodifferentiation stem cells, Regenerative medicine
  Affiliation: Chief Scientific Officer,TriStem UK Limited, 571 Finchley Road, Unit 320, London NW3 7BN, England
 
  Key: New Content Free Content Open Access Plus Subscribed Content

Bentham Science Publishers
www.benthamscience.com

 

  Copyright © 1994 - 2014   Bentham Science Publishers